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Electronic energy and charge transfer in atomic collisions are described within a first principles molecular
dynamics including an explicit treatment of electronic motions, in terms of time-dependent many-electron
wavefunctions. Following an overview of treatments in the literature based on expansions in sets of adiabatic
and diabatic electronic states, this article emphazises the use of time-dependent molecular orbitals and time-
dependent Hartree-Fock states. Three fundamental problems are identified in a first principles dynamics,
relating to the calculation of state-to-state transition probabilities and expectation values, to the translational
motion of electrons moving with nuclei, and to the coupling of fast electronic transitions and slow nuclear
motions. Solutions to these problems are described on the basis of an eikonal representation of wavefunctions
and sums over initial conditions, of the use of traveling atomic functions to expand molecular orbitals, and
of a relax-and-drive propagation procedure for electrons and nuclei. Examples are presented of applications
in ion-atom and ion-surface collisions, relating to electronic excitation and charge transfer, orbital polarization,
and light emission during collisions.

1. Introduction

The purpose of this feature article is to present our treatment
of the first principles molecular dynamics of systems undergoing
electronic rearrangement and excitation, including an explicit
description of electronic motions. A time-dependent description
is appealing on conceptual grounds because it provides new
insight on the nature of electronic motions during molecular
interactions and on their interaction with light and supplements
the more usual studies of transitions between stationary states
of reactants and products. It can also serve in the interpretation
and prediction of new experiments where light pulses are used
to investigate femtosecond dynamics and spectra.1-5 This article
gives an overview of related work in the past ten years, but it
does not attempt to review the field. This is very active, and
involves contributions from several areas of chemistry and
physics, relating to molecular spectra and dynamics, atomic
collisions of interest in accelerators and plasmas, planetary
atmospheres and interstellar media, molecular dynamics in
solution and surfaces, etc. The present article further does not
cover the first principles molecular dynamics of extended
systems, which involve dissipative phenomena and where similar
methods can be applied.

Our aims for a first principles quantum molecular dynamics
approach are

•To gain insight on what electrons do during interactions,
going beyond the calculation of state-to-state transition prob-
abilities to describe the time evolution of electrons. This includes
the calculation of auxiliary quantities, such as atomic popula-
tions, and of observables, such as intensities of light emission,
as they evolve during interactions.

•To develop a treatment of the nuclear motions that incor-
porates from the outset couplings to electronic transitions so
that the molecular dynamics can be generated with similar
methods for systems with few or many atoms, and for systems
with small or large total energy.

•To develop a treatment of electronic rearrangement in
molecular interactions that can be directly applied to series of
compounds and systems with several active electrons, instead
of solving first for potential energy functions and couplings for
each particular system.

The emphasis in this work is on the time dependence of
electronic states induced by nuclear motions, as described by
many-electron theories. It is therefore closely related to areas
of quantum chemistry as well as quantum molecular dynamics.
The time-dependence of many-electron states may be described
by means of the Born-Oppenheimer states derived by first
fixing nuclei,6-10 or at a deeper level by constructing time-
dependent molecular orbitals. The advantage of the second
approach is that it provides new insight on the dynamics of
electrons, not apparent when the Born-Oppenheimer states are
introduced.

Recent quantum chemical approaches to electronic structure
have been very successful. They have emphasized the develop-
ment of general computer programs that can be applied to a
wide range of molecular species and their interactions and have
been systematically improved until they can now provide useful
and accurate results that compete with experimental data. The
standard approach to molecular dynamics is to divide the
problem into two stages, relating firstly to electronic structure
and secondly to the nuclear dynamics.11-15 This involves the
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calculation of electronic statesΦI(q;Q), whereq andQ are the
collections of electronic and nuclear (or atomic core) variables,
of potential energy surfaces (PESs)EI(Q), of their couplings
〈ΦI/∂ΦJ/∂Q〉 due to the displacement of nuclei (the Born-
Oppenheimer momentum couplings), and of the structural
dependence of properties such as electric transition dipoles
DIJ(Q).16-20 This approach succeeds on two accounts. It can be
applied to many different species, and it can be made accurate
enough to provide relevant PESs properties such as locations
of minima and saddle points, curvatures at minima, and
transition energy barriers for ground electronic states. Similar
generality and accuracy have not been available in dynamics
studies involving electronically excited systems. Here the PESs
and couplings have been parametrized as needed in each special
case, and then the dynamics involving coupled PESs have been
described with a variety of methods from purely quantal to
classical ones, chosen for their feasibility. This approach
becomes progressively more difficult and less insightful as the
number of nuclear degrees of freedom increases, and PESs must
be pictured in many dimensions.

Extensive work has been done in recent years combining
quantum chemical and molecular dynamics methods for ground
electronic states, to achieve some of the generality missing in
the past. The Car-Parrinello method21,22introduced a variational
procedure with a Lagrangian density based on Hamiltonian
density functionals and an electronic amplitude evolving with
an artificial mass chosen to dampen electronic oscillations
induced by the moving nuclei, to generate a dynamic simulated
annealing of electronic motions. This leads to an efficient
procedure to describe the dynamics of systems in their electronic
ground state. Another successful approach for systems remaining
in single electronic states has been the so-called Born-
Oppenheimer molecular dynamics approximation, which simul-
taneously solves for the motion of nuclei and a single electronic
state using a variety of many-electron descriptions. These have
been based on density functional as well as methods going
beyond the Hartree-Fock approximation, such as the general-
ized valence bond approximation, to provide useful PESs during
the molecular motions.23-30 Here the electronic wavefunction
is obtained at each nuclear configuration from a quantum
chemical calculation that does not depend on the nuclear
velocities. In our notation, known positionsQ(t) and electron
densitiesF(t) are advanced to timet + ∆t by using the classical
equations for accelerationsQ̈,

whereVii andVei are the ion-ion and electron-ion Coulomb
interactions, and by numerically calculating the electronic state,
and thereforeF, at the new conformation.

Extensions of molecular dynamics to incorporate electronic
transitions by explicitly calculating the electronic states during
interactions, in a first principles molecular dynamics, have only
recently been developed, aided by the increasing power of
computers and the development of efficient algorithms for
electronic structure calculations. The time-dependent molecular
wavefunction is given by an expansion in electronic states,

with coefficient functionsFI describing the quantal nuclear
motion over time. The electronic states may be chosen for
convenience to be the adiabatic Born-Oppenheimer states or
some diabatic states obtained by transformations that simplify

the dynamics.31-34 The computational effort can be very large
when a system has many atoms or if one needs for example a
very accurate electronic description of transition states. There-
fore, great care is needed to select the combination of electronic
structure and molecular dynamics methods to be used.

A brief discussion of the computational choices for the nuclear
dynamics indicates their advantages and disadvantages. A
general approach for stationary states, which can be made as
accurate as it is affordable, is the coupled-channels expansion
method where a stationary molecular wavefunction starting in
scattering stateR ) (kBI, I) is expanded in electronic states,
ΨR

(+)(q,Q) ) ∑ΦI(q;Q) FR
(+)(Q), and the coefficient functions

describe a nuclear scattering state with outgoing waves.11,15,17,35-40

This appears to be the most accurate method but is limited by
its large computational cost, which increases geometrically with
the number of coupled channels and is not practical for many
degrees of freedom (many-atom systems require the calculation
of electronic states for all relevant nuclear conformations, i.e.,
over the range ofF(+)) or for high total energies of the systems
(i.e., many electronic excited states). The alternative has been
to introduce time-dependent treatments41-44 and to describe the
nuclear motions with wavepackets, or in in some classical or
semiclassical approximation, so that electronic states are needed
only along nuclear trajectories specified by position and
conjugated momentum variablesQh (t) and Ph(t). One such
approach is the surface hopping approximation for many-atom
systems and its extensions.45-52 This provides a prescription
for making transitions between potential energy surfaces at
crossings or avoided crossings in such a way that there is no
need to know in advance where the transitions would occur and
gives a stochastic picture correct on the average for the electronic
transition probabilities, obtained by adding over a discrete set
of initial conditions. Treatments based on semiclassical or WKB
wavefunctions in each electronic state and on wavefunction
matching near crossings or avoided crossings have been
developed by several groups to account for quantal phase
interference, although they generally require preliminary insight
about the regions of the nuclear motion phase space where
electronic transitions may occur and have therefore been applied
mostly to few-atom systems.14,15,53,54 Turning to methods
applicable to many- as well as few-atom systems, the best
candidates so far have relied on expansions in localized
wavepackets,44,55-62 path integral methods,28,30,41,63-65 discrete
variable representations,66,67 and short-wavelength or eikonal
methods for electronically diabatic phenomena.34,68-70,71-73

Expansion and grid methods lead to electronic probability
amplitudes that depend only on time, for example, expanding
the time-dependent nuclear wavefunctions on the basis of
localized functions (e.g., Gaussiansgj(Q,t)) as in FI(Q,t) )
∑gj(Q,t) CjI(t) or discretizing the nuclear coordinates over a grid
{Qj} to work with functionsAjI(t) ) FI(Qj,t).74,75

The combination of semiclassical methods with electronic
structure calculations require some sort of integration over initial
values of nuclear positions and momenta, or initial phase space.
This relates to the early work on semiclassical molecular
dynamics76,77 and the eikonal treatment of scattering ampli-
tudes15,34,69,78and has been reactivated in recent years with
developments of cellular dynamics59,79,80and a variety of other
initial value methods56,69,77,81-85 that appear quite promising for
first principles treatments of molecular dynamics. Another
common aspect of semiclassical treatments is the need for
simultaneous propagation of electronic amplitudes and nuclear
trajectoriesQh (t). This can be done numerically by solving the
coupled time-dependent Schroedinger and Hamiltonian equa-

MQ̈ ) -∂Vii /∂Q - ∫ dq [F(q;Q) ∂Vei(q;Q)/∂Q]Q(t) (1)

Ψ(q,Q,t) ) ∑
I

ΦI(q;Q) FI(Q,t) (2)
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tions or using a purely Hamiltonian formulation where real and
imaginary parts of the complex electronic amplitudesCjI(t) play
the role of position-like and momentum-like variables.86-88 This
Hamiltonian (or symplectic) treatment can be generalized in a
mathematically elegant way in terms of coherent states89-92 and
has been applied to molecular dynamics.72,93 Path integral
methods have been implemented to do calculations of molecular
dynamics, using centroid approximations, and numerical tech-
niques for the integration of rapidly oscillating exponentials.65,94-96

The combination of electronic structure and dynamics intro-
duces new aspects into the molecular orbital and many-electron
treatments of molecular interactions. One of them is that the
molecular orbitals must be allowed to take complex values to
satisfy the time-dependent Schroedinger equation for electronic
states with nonstationary initial conditions. Another more subtle
aspect is that the atomic orbitals must move with the nuclei on
which they are located. In effect, the momentum couplings
between electronic states turn into integrals of the form〈ΦI|∂ΦJ/
∂t〉 when trajectories are used. Given molecular orbitals as
combinations of atomic orbitalsøν, it follows that the coupling
derivative leads to one-electron integrals〈øν|∂øν′|∂t〉, whereν
andν′ refer to the same nucleusn. Such integrals do not vanish
as nucleusn is removed to large distances with velocityVbn, and
ignoring this leads to spurious intra-atomic orbital couplings at
large distances. The problem is present at both high and low
collision energies and must be considered when looking into
collision-induced excitation or deexcitation of species and into
state-to-state transition probabilities. This was first identified
as a problem and given a solution in terms of electron translation
factorsT(rb,t;Vbn) and expansions in traveling atomic functions
êν(rb,t) ) øν(rb) T(rb,t) in pioneering work relating to fast atomic
collisions97,98and has been investigated and applied to collision-
induced charge rearrangement within molecular orbital and
atomic orbital descriptions.15,99-103

To complete this brief overview, it is worth mentioning that
extensions of the wave mechanical treatments of molecular
dynamics are possible using density functionsΓ(q,Q,q′,Q′,t),104,105

which appear suitable for treatments of coherence (or decoher-
ence in large systems) and also allow for semiclassical ap-
proximations.

Our interest in time-dependent many-electron treatments of
molecular interactions derived from a study of ion-atom
collisions using a time-dependent variational principle we
introduced for state-to-state transitions.106-108 It considered the
applicability of the time-dependent Hartree-Fock (TDHF)
approximation and its limitations for collisions involving more
than one electron transfer (i.e., several final charge states), and
it provided an extension of TDHF in terms of forward and
backward evolving TDHF states.

In our treatment of molecular dynamics from first principles,
we have introduced time-dependent molecular orbitals and
TDHF as well as multiconfiguration (MC) TDHF many-electron
states.109-113 By analogy with time-independent MC-HF
methods,114-116 we have developed the equations and compu-
tational aspects required to couple the electronic rearrangements
to the motion of nuclei, while allowing for the quantal nature
of electronic transitions and quantal features of nuclear motions
such as wavefunction phase interference within an eikonal
representation.

We have done this using the methodology already developed
in quantum chemistry: molecular orbitals formed from com-
binations of atomic functions, determinantal states, the available
algorithms for calculation of one- and two-electrons integrals,
etc. We have also incorporated aspects absent in quantum

chemistry and relating to moving nuclei: electron translation
factors, traveling atomic basis functions, and velocity-dependent
Hamiltonian operators. The implementation of a treatment along
the lines we have described involves three fundamental prob-
lems:

•Calculating state-to-state transition probabilities and expecta-
tion values of properties for systems with complicated sequences
of electronic rearrangements along nuclear paths, from our
knowledge of eikonal wavefunctions constructed from those
paths.

•Accounting for the translational motion of electrons moving
with the nuclei, to avoid spurious couplings of atomic states,
in many-atom systems. This requires a rethinking of atomic
function expansions and of methods for calculating one- and
two-electron integrals for the electronic structure.

•Solving the coupled differential equations for the time-
dependent interactions of fast electronic and slow nuclear
motions while avoiding numerical difficulties (accumulation of
computer roundoff errors) associated with the simultaneous
propagation of functions with very different time scales.

The way we have dealt with these problems is briefly
described in the coming sections. Our solution to the first
problem has been based on aneikonal representationof the
molecular wavefunction,69,78 combined with a procedure to
calculate transition probabilities and expectation values of
properties in collisions. This is done in section 2, for both
stationary and nonstationary states, using in the latter case a
time-dependent variational approach to derive the relevant
equations.110,111,113The way the eikonal treatment has been
combined with many-electron states and implemented for ion
collisions with atoms and surfaces is described in section 3,
where the eikonal/TDHF (Eik/TDHF) and other approximations
are considered. The second problem is dealt with in terms of
linear combinations of traVeling atomic functions(LCTAFs)
and switching between basis sets.110,112,117,118The coupling of
fast electronic and slow nuclear motions over time, the third
problem, is considered in section 4, within a procedure we have
termed therelax-and-driVe propagation method. This was
introduced in our early work on collision-induced electron
transfer in ion-atom and ion-surface interactions109,111,119,120

and appears to be generally applicable to problems involving
different time scales. In this respect it seems to provide an
alternative to recent popular multiple-time-scales propagation
methods.30,121-123

Our choices of applications to physical systems have been
dictated by the need to check the validity and accuracy of our
calculations. This has been done by comparing our results with
other calculations based on different approaches or with
experimental results. Diatomic systems are a good starting point
because in many cases atom-atom interactions show axial
symmetry and the relevant nuclear variables reduce to only one,
the interatomic distance. Its motion can be coupled to electronic
rearrangement, and this may be done first for systems with only
one active electron outside closed shells, and then followed by
systems with several active electrons. In the first case one is
dealing with a time-dependent molecular orbital (TDMO) theory,
while for several electrons the simplest meaningful approach
is that of the TDHF approximation. Polyatomic systems add
more nuclear degrees of freedom and new demands on the
treatment of the nuclear dynamics, which must be developed
to construct bound states such as diatomic vibrational-rotational
states in atom-diatom collisions. Here again studies can be done
for one or several active electrons. There are few studies of the
many-electron dynamics of polyatomic systems because of the
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expense of doing calculations for many trajectory steps, and
also because the incorporation of traveling atomic orbitals is
more difficult here, and requires modifications of the computer
programs available from quantum chemistry for one- and two-
electron integrals. Calculations have, however, been done with
ab initio potentials and couplings,70,73,100and also with TDHF
states constructed from static AFs, which is acceptable if state-
to-state probabilities are not needed.124

Other phenomena of interest to us have been atomic ions
interacting with solid surfaces. Electronic rearrangement is then
a localized event leading for example to electron transfer, which
neutralizes projectile ions. For that reason it is possible to
describe surface phenomena in a way analogous to molecular
phenomena, by using localized electronic orbitals for the
surfaces.120,125 The additional challenges here are to account
for electronic excitations in the solid and to include lattice
vibrations.

In addition, a very broad area of applications deals with
molecular interactions in electromagnetic fields, including
collision-induced light emission and absorption. This has been
well studied for phenomena where a product species from a
collision is formed in excited states and emits light while
perturbed as it leaves the collision region, but it also occurs for
complexes formed during electronic interactions at short dis-
tances. In this case it is necessary to describe not only the
coupling of electronic and nuclear motions but also their
coupling to the present or created radiation field. We have
considered collision-induced light emission by a molecular
complex assuming that the radiation is classical, by working
with the time-dependent dipoles of the interacting system.126

We have applied our approach to the time dependence of
collision-induced electronic energy and electron transfer110,112

and orbital polarization127 in H+ + H(1s) and isotopic variations,
and in He2+ + H(1s); we have also obtained some of the first
results on light emission by the complex formed in H+ + H(1s)
interactions.126 Although these systems contain only one
electron, they are challenging three-body systems undergoing
quantal dynamics and excellent tests for theoretical methods.
They also hold some surprises, such as the brief duration (and
possible detectability) of the light emission. We have also
considered systems with several electrons, in particular H+ +
Li(1s22s) (with an active atomic core) and He+(1s) + D(1s)
(an active electron at each center).128 Our earlier work dealt
with 1- and 2-electron transfer in He2+ + He(1s2), and spin
rearrangement in H(1sγ) + H(1sγ′), where γ ) R or â
spins.106,108Studies of collisional electron transfer have also been
done for the ion-surface system Na+ + W(011) using electronic
orbitals localized at the surface.119,120Some of these applications
will be presented in section 5.119,120

2. Expectation Values and State-to-State Transition
Probabilities

Our solution to the first problem, accounting for the dynamics
of complex electronic rearrangements, has been based on an
eikonal representationof the molecular wavefunction.69,78 In
this representation, wavefunctions are written in the form
ø(q,Q,t) exp[iS(Q,t)/p], with a factorized exponential function
of classical-like variablesQ, with S meaning a classical-like
mechanical action; this representation is formally exact and can
be used to derive equations of motion of theQ variables, before
making approximations. It provides an approach that can be
generally applied without detailed preliminary knowledge of
sequences of electronic rearrangements. The usual eikonal
approximation is obtained in the limit of short deBroglie

wavelengthsλdB ) P/h , aB, the Bohr radius. The procedure
provides a straighforward derivation of integrals and expectation
values expressed as sums over initial values of trajectories and
can be described as an initial value method. This eikonal
treatment derives from our work on collision-induced state-to-
state transitions using stationary scattering states, and given
potentials and couplings for electronic states. It was applied to
H+ + H2 collisions88 and to the photodissociation of CH3I,129

with diabatic electronic potentials and couplings, to a model
system of two coupled electronic states in both adiabatic and
diabatic representations,34 and to angular distributions in hy-
perthermal atom-atom collisions,130 with very good results. It
was adapted to the treatment of coupled electronic and nuclear
motions,109-112where it leads to time-dependent electronic states
driven by the time evolution of the classical-like variables, and
more recently it has been developed for nonstationary solutions
of the time-dependent Schroedinger equation.113We give in what
follows an overview of the treatment and refer to the original
papers for the derivations. Taking the nuclear coordinatesQ to
be classical-like, the eikonal representation gives the wavefunc-
tion Ψ(q,Q,t) for an initial electronic state I as a superposition
of functions, of the form

with parametersΛ (such as initial values of momenta and
coordinates) and combination coefficientsa(Λ) chosen to
construct the initial state,Ψ(in)(q,Q) from ø(in)(q,Q;Λ) and
S(in)(Q;Λ). Here the variablesq refer to electronic coordinates
and spin, but more generally they could also include the
coordinates of protons if they must be treated as quantum
variables, for example in studies of proton transfer requiring
phase interference and tuneling. The functionS(Q,t) is chosen
to be real. The preexponential factorø(q,Q,t) is, however,
complex and has its own phase, dependent on the electronic
state. Differential equations satisfied by these two functions can
be obtained quite generally113 from the Dirac-Frenkel time-
dependent variational principle (TDVP).131,132The equation for
S is, for given I,

and the one forø is

whereĤQ is the electronic Hamiltonian operator obtained fixing
nuclear coordinatesQ. It follows from the first equality that
S is a solution of a Hamilton-Jacobi equation and can be
interpreted as a mechanical action governed by a quantum
potentialVqu while ø satisfies a time-dependent Schroedinger
equation with shifted momenta and energy. The quantal potential
is given, for a system starting initially in state I, byVqu,I )
VI + V′I + V′′I ,34,69 with

where the first term is identified as the Ehrenfest potential with

ΨI(q,Q,t) ) ∫ dΛ a(Λ) øI(q,Q,t;Λ) exp[iS(Q,t;Λ)/p] (3)

1
2M(∂S

∂Q)2
+ Vqu(Q,

∂S
∂Q

,t) + ∂S
∂t

) 0 (4)

[ 1
2M(pi

∂

∂Q
+ ∂S

∂Q)2
+ ĤQ - (ip ∂

∂t
- ∂S

∂t )]ø(q,Q,t) ) 0 (5)

VI ) 〈øI|HQ|øI〉/〈øI/øI〉

V′I ) ip
2M

∂S
∂Q[〈∂øI

∂Q|øI〉 - 〈øI|∂øI

∂Q〉]/〈øI|øI〉

V′′I ) - p2

2M
1
2[〈∂2øI

∂Q2|øI〉 + 〈øI|∂2øI

∂Q2〉]/〈øI|øI〉 (6)
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its meaning of a classical effective potential, and the following
terms are quantal corrections. The bracket notation here and in
what follows signifies an integration only over electronic
variables, so that the brackets are yet functions of nuclear
variables. The quantal corrections are small in regions where
the functionø varies slowly over distances of the order of the
deBroglie wavelength of the nuclear momenta. These equations
are formally exact. In practice, the quantal corrections are
neglected or included only as corrections for short de Broglie
wavelengths, in improved eikonal approximations. The effective
potential is thenVqu ) VI or, if an average is taken over several
initial states I with weightswI, it is Vhqu ) ∑wIVI. The solution
to the Hamilton-Jacobi equation can be written as the integral
of a LagrangianL,133

with L(Q,Q̇,t) ) MQ̇h 2/2 - Vqu, and whereM is the mass of
(scaled) coordinatesQ. This action can alternatively be con-
structed introducing the momentaP ) ∂S/∂Q, from solutions
to the Hamiltonian equations with the same potential,

where nowP and Q can be interpreted as the position and
momentum variables of trajectories originating at initial values
Pin andQin and evolving asP(t;Pin,Qin) andQ(t;Pin,Qin). Some
initial values of generalized momenta may be fixed by initial
conserved quantities such as energy and angular momentum,
while the others are available to combine the elementary
solutions in eq 5 and construct the initial states, so that one can
write that a(Λ) ) a(Pin,Qin) and integrate over the available
Pin. This leaves a dependence of the statesΨ on theQin, which
can be used to calculate expectation values as follows. The
expectation values of propertiesÂ ) Â(Q,Q′,t), written here as
operators on the electronic states and functions of the nuclear
coordinates, are given by integrals〈A(t)〉 ) ∫ dQ ∫ dQ′
〈Ψ(Q,t)|Â(Q,Q′,t)|Ψ(Q′,t)〉, which can be transformed by mak-
ing a change of variables from the space coordinatesQ to the
initial valuesQin to obtain the initial value expressions

written in terms of the JacobiansJ ) ∂(Q)/∂(Qin) of the
transformations. This expression suggests a computational
approach based on the discretization of the initial phase space
of the classical variables, followed by integration over time of
the coupled equations for theP, Q, andø originating at each
discrete set of values.

It would appear as if the choice of a single phase factorS in
the eikonal representation would prevent the wavefunction from
evolving differently when the system changes between electronic
states (i.e., jumps between potentials energy surfaces). But such
changes are allowed through the phases of the complexø
function. The equation forS, or instead the Hamiltonian
equations, solved for an initial grid in phase space, provide a
time evolving grid adapted to the physical situation, covering
only the relevant range of phase space over time. This avoids

the calculation of electronic wavefunctions over physically
irrelevant regions ofQ values. The electronic wavefunctionø
is generated on this grid by solving its equation, which allows
for potential jumps. Furthermore, the time-evolving grid is
governed by the potentialVqu, which is not an average of PESs
but really an effective potential showing sharp transitions among
PESs, so that it can change, for example, from a repulsive to
an attractive potential. See, e.g., refs 34 and 88.

Our original introduction of the eikonal representation was
done for the time-independent Schroedinger equation for total
energyE and scattering statesø(+) as they appear in collisions
or photodissociation. This can be recovered with the choice
S(Q,t) ) S0(Q) + Et andø(q,Q,t) ) ø(+)(q,Q) exp[-if(t)/p].110,113

The functionS0(Q) satisfies the time-independent Hamilton-
Jacobi equation and this leads again toQ(t) andP(t) functions
of initial values. Collision-induced state-to-state transition
probabilities R ) (kBI,I) f â ) (kBJ,J) between states in
arrangement channels c) i, f can then be obtained from the
scattering integrals34,69,110

where now the integration variables were changed first from
Q to Qin ) (Q1

in, Q2
in, ..., Qf

in) and then to the timet and the set
Qh in ) (Q2

in, ..., Qf
in) of all except one initial coordinate. The

eliminated coordinate is any convenient one varying linearly
with time. This integral can be calculated by starting with a set
of initial coordinates and advancing time and adding over all
initial sets of coordinates. The operatorĤ′f is the coupling
potential in the final channel. Cross sections follow from these
integrals or, in the stationary phase approximation of the integral,
from

where the first factor to the right is a differential cross section
generated by the effective potential and the second factor is a
probability of transition that can be obtained from the many-
electron wavefunctions.

The shape of the effective potentialVqu,I(Q) depends on the
electronic state I specified by the initial conditions. This leads
to transition probabilitiesPâR, which would not exactly satisfy
microscopic reversibility conditions. The related numerical error
in PâR is expected to be small when the collision energies are
appreciably larger than electronic excitation energies, as indeed
found in many applications. However, the errors related to
nonreversibility would increase for low collision energies or
for interactions leading to long-lived complexes. This problem
has been addressed by us in two ways. In our early work108

using a variational functional for transition amplitudes, we
showed how to construct time-reversible probability amplitudes
using two trial states,ΨI

(+)(t) andΨJ
(-)(t), with specified initial

and final conditions and running forward and backward in time,
respectively. It was shown there that excellent agreement with
exact results could then be obtained for low-energy atom-atom
collisions. The second way we have avoided biasing the effective
potential by the initial conditions,34 has been to instead use the
average effective potentialVhqu, obtained from the weighted sum
of the Vqu,I(Q) for all the involved states I. It was shown, by
comparison with exact results for atom-atom collisions at low
energies, that this gives accurate results satisfying microscopic
reversibility.

S(Q,t) ) Sin(Q) + ∫tin

t
dt′ L(Qh ,Q̇h ,t′) (7)

∂P/∂t ) -∂Hqu/∂Q, ∂Q/∂t ) ∂Hqu/∂P (8)

Hqu ) P2/(2M) + Vqu(Q,P,t) (9)

〈A(t)〉 ) ∫ dPin ∫ dQin ∫ dP′in ∫ dQ′in ×
J(t;Qin,Pin) J′(t;Q′in,P′in) FA(Pin,Qin,P′in,Q′in,t)

FA ) a(P′in,Q′in)* 〈ø(Q′,t)|Â|ø(Q,t)〉a(Pin,Qin) ×
exp{i[S(Q,t) - S(Q′,t)]/p} (10)

TâR ) ∫ dQ 〈øâ
0(Q)|Ĥ′f|øR

(+)(Q)〉 exp[-i(SR - Sâ
0)/p]

) ∫ dt ∫ dQh in Jh(t;Qh in) FT(t;Qh in) (11)

( dσ
dΩ)JI

) ( dσ
dΩ)I

PâR (12)
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3. Eikonal/TDHF Approximation and Extensions

The advantage of using an eikonal description is that the
electronic wavefunctions are needed only along nuclear trajec-
tories. In the eikonal limit of short deBroglie wavelengths, the
potential energies in the second and third lines of eq 6 can be
ignored, and eq 5 simplifies to

with W(P,Q,t) ) Vqu(Q,P,t) + ip(∂P/∂Q)/(2M). Letting P and
Q change with time along trajectories, withP ) MQ̇ and
Q̇∂/∂Q + (∂/∂t)q,Q ) (∂/∂t)q, the replacement

leads to the usual time-dependent Schroedinger equation for the
electronic wavefunction,

In a general case, the trial function forN electrons is a
combination of Slater determinantsDI(1,2,...,N,t) ) (N!)-1/2

det[ψim(n,t)], constructed fromN time-dependent molecular spin-
orbitals (MSOs),{ψi(rb,ú,t)}, and wheren in the arguments is a
short hand for all the coordinates (position and spin) of electron
n and m ) 1-N. In the simplest choice, useful in many
applications, the trial function is a single determinant and the
variational procedure leads to the TDHF approximation. The
MSOs can be chosen at the initial time so that electrons are
localized at a given nucleus, unlike the situation when the MSOs
are time-independent and delocalized. Furthermore, the TDHF
approximation includes some electron correlation.7

Instead of working with MSOs, it is more convenient to
introduce the TDHF density formed from occupied MSOs,

because this provides a compact description and does not require
specification of occupied and unoccupied orbitals, which would
change in a time evolution. It satisfies the equation

whereF̂ ) Ĥ(1) + Ĝ[F̂I] is the Fock operator written as a sum
of a one-electron termĤ(1), plus the HF self-consistent potential
energy operatorĜ[F̂I].

The average effective potential needed in the Hamiltonian
equations is now

where the first term is the core-core interaction potential and
the second term is a sum over all initially populated states. The
TDHF equations for eachF̂I and the classical Hamiltonian
equations must be solved simultaneously and entail a combina-
tion of the eikonal approximation for the nuclear motions and
the TDHF approximation for the electrons or, in our notation,
the Eik/TDHF approximation.

State-to-state cross sections follow from

where we have used that the overlap of determinants is a
determinant of overlaps and that the product of determinants
of matrices is the determinant of the matrix product, to find a
compact expression in terms of the propagated density operator.

The driving effect of nuclear displacements on electronic
states is large, and the TDHF equations cannot be solved using
perturbation theory. A nonperturbative treatment can, however,
be done for each initial state I introducing basis sets and solving
matrix TDHF equations. Given a general basis set of one-
electron orbitals{φp(t)}, with overlap integrals〈φp|φq〉 ) Spq,
and expanding MSO’s with spin stateγ(ú) in that basis,

where the coefficients are complex valued. The density operator
in the basis is

with Ppq
γ the (pq)-element of the one-electron density matrix

Pγ. The TDHF equation for the density matrix is then

whereS ) 〈φ|φ〉 is the overlap matrix andΩ ) 〈φ|∂φ/∂t〉 is an
orbital coupling due to the motion of the nuclei, both given in
a matrix notation where|φ〉 is a 1× NB row matrix of basis
functions. TheΩ matrix is the one that contains spurious
couplings of atomic states at large distances, but it can be
eliminated with a transformation to a basis of traveling atomic
functions (TAFs) êµ; MO’s are then expanded as linear
combinations of TAF’s, or LCTAFs,

whereêµ(rb,t) ) øµ(rb) Tm(rb,t); hereøµ is an AF centered at nuclear
positionRBm(t), and

is an electron translation factor, a function of the velocity vector
of nucleusm. In this TAF basis, the TDHF equation becomes110

which does not contain spurious coupling terms. The modi-
fied Fock-like matrix appearing here is given by (FT

γ)µν )
〈êµ|TnF̂γTn

-1|êν〉.
It is convenient to evaluate one- and two-electron Coulomb

integrals in the basis of static AFs and then transform to the
TAFs. For a general matrixO(φ) expressed in aφ basis, we
haveO(ê) ) B†O(ø)B, where we have used the transformation
matrix with elements

[pi P
M

∂

∂Q
+ ĤQ - W(P,Q,t) - ip( ∂∂t)q,Q]ø(q,Q,t) ) 0 (13)

øI[q,Q(t),t] ) ηI(q,t) exp[i∫tin

t
dt′ W(t′)/p] (14)

[ĤQ(t) - ip( ∂∂t)q]ηI(q,t) ) 0 (15)

F̂I(t) ) ∑
occ i

|ψi〉〈ψi| (16)

F̂F̂I - F̂IF̂ ) ip∂F̂I/∂t (17)

Vqu
(HF) ) Vcc + ∑

I

wI tr[F̂I(Ĥ
(1) + F̂)]/2 (18)

( dσ
dΩ)JI

) ( dσ
dΩ)I

|〈DJ
0(tf)|DI(tf)〉|2

) ( dσ
dΩ)I

|det[〈ψj
0(tf)|ψi(tf)〉]|2

(19)

) ( dσ
dΩ)I

det[〈ψj
0(tf)|F̂I(tf)|ψj′

0(tf)〉]

ψi
γ( rb,t) ) ∑

p

φp( rb,t) cpi
γ (t) (20)

F̂(t) ) ∑
pq

|φp〉Ppq
γ (t)〈φq| (21)

ipP4 γ ) S-1(Fγ - ipΩ)Pγ - Pγ(Fγ - ipΩ)†S-1 (22)

ψi
γ( rb,t) ) ∑

µ

êµ( rb,t) cµi
γ (t) (23)

Tm( rb,t) ) exp{ime[Vbm(t)‚ rb - ∫tin

t
dt′ Vm

2(t′)/2)]/p} (24)

iP4 γ ) S-1FT
γ Pγ - Pγ(FT

γ)†S-1 (25)
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where [S(ø)]µν ) 〈øµ|øν〉 and [S(øê)]µν ) 〈øµ|êν〉. We solve the
TDHF matrix equation (for given spinγ) with the sequence of
transformationsP(ê) f P(ø) f F(ø) f F(ê) that use

and

which avoid the calculation of the inverse ofB and of 4-index
transformations of the 2-electron integrals, and therefore
considerably increase the efficiency of the computation. Details
of computational aspects with these basis sets can be found in
refs 110, 112, and 128.

A multiconfiguration extension of TDHF, or MCTDHF,
can be developed also starting from Slater determinants
DK(1,2,...,N,t), whereK ) (k1,...,km,...,kN) is an ordered set among
NB > N MSOs that can be combined into configuration spin
functions (CSFs)ΦK(1,2,...,N,t), which are eigenstates of the
spin operators. The multiconfiguration function

depends parametrically on the expansion coefficientsCKI, and
on the LCTAFs parameters within the MSOs. It is a sum over
a selected subset ofNC configurations, usually smaller than the
total number of configurations that can be constructed from the
complete active space of MSOs. Placing this trial function into
the TDVP, a variation of the expansion coefficients gives the
set of coupled equations for theCKI coefficients. Details of the
derivation may be found in ref 113.

4. Propagation of Coupled Electronic and Nuclear
Motions

For thermal energies or hyperthermal energies up to about
10 000 eV, nuclear velocities are small compared with electronic
ones, and oscillations of electronic states are much faster than
changes of the nuclear variables. Since these degrees of freedom
are interacting, it is not efficient to solve their coupled
differential equations by straightforward time-step methods. We
have instead developed a propagation procedure suitable for
coupled equations with very different time scales: short for
electronic states and long for nuclear motions. The procedure
introduces a local interaction picture with a unitary transforma-
tion at each time interval. The equations in the Eik/TDHF
approximation are eqs 8 coupled to

with W(t) ) S-1FT and must be solved for the initial conditions
at t ) tin: Qin ) Q(tin), Pin ) P(tin), and Pin ) P(tin). The
matrices and trajectory variables are assumed known at a time
t0; the density matrix is first obtained as it relaxes over the
intervalt0 e t e t0 + ∆t ) t1, while the nuclear variables remain
fixed. Its matrix elements are the solutions of the equations

whereW(t0) ) W0, which show that the density matrix elements
change with time as they relax from their (nonstationary) values
at t0, whereP(t0) ) P0. Since theW0 matrix is constant in time,
these coupled equations are simple first-order differential
equations with constant coefficients and can be integrated by
diagonalizing theW0 matrix. The results are sums of rapidly
oscillating functions in time, reflecting the rapid electronic
motions. Relaxation occurs by rearrangements of the molecular
orbitals. The nuclear motions introduce a driving effect within
the intervalt0 e t e t1. Choosing this interval to be short in the
time scale of nuclear motions (although long compared to
periods of electronic oscillations), one can assume that the
driving effect will only introduce small corrections to the
relaxing densities; this can be verified by shortening the time
interval and repeating the calculations. The corrected densities
are obtained by writing

for the density matrix, whereU0 defines a unitary transformation
to a local interaction picture at each timet0. With the
displacement energy matrixV(t) ) U0(t)[W(t) - W0]U0(t)†,
the solution for the density matrix correction is

where the driving term∆′ can be obtained from a quadrature
and the second term inP′ can be neglected for a small time
interval. With the new density matrices known up to timet1, it
is possible to advance the nuclear positions and momenta by
integrating their Hamiltonian equations. This completes a cycle
that can be repeated to advance to a later timet2. This sequence,
based on relaxing the density matrix for fixed nuclei and then
correcting it with a quadrature to account for the driving effect
of nuclear motions, has been called by us therelax-and-driVe
procedureand has been numerically implemented in several
applications.109,110,112,119,120,126-128

5. Some Applications to Collisional Transfer of Electronic
Energy and Charge and Light Emission

Results in this section have been obtained with TAFs and
the linear combinations of Gaussians,

with orbital quantum numbersl ) 0, 1, 2 and where theRnl,k

are exponential coefficients that scale with the square of the
effective nuclear charge. The numberK in our studies is either
6 or 12. Differential cross sections for electronic transitions
I f J have been obtained from (dσ/dΩ)JI ) (dσ/dΩ)PâR(tf) as
previously described. The time steps in the propagation of
trajectories and the density matrix have been determined, so
the ratio of the magnitudes of the density matrix changeQ to
the full density matrixP always satisfiesεlower e |Q|/|P| e
εhigher, whereεlower andεhigherare lower and higher tolerances.110

The applications we have chosen relate to phenomena where
nuclear velocities are small compared to electronic velocities,
the situation typical in chemical interactions, and for which our

Bµν ) ∑
κ

[(S(ø))-1]µκ[S
(øê)]κν (26)

Pµν
(ø) ) ∑

µ′ν′
Bµµ′Pµ′ν′

(ê) (B†)ν′ν (27)

Gµν
(ê) ) ∑

µ′ν′
(B†)µµ′Gµ′ν′

(ø) Bν′ν (28)

ηI(1,2,...,N,t) ) ∑
K)1

NC

ΦK(1,2,...,N,t)CKI(t) (29)

WP - PW† ) ip dP/dt (30)

W0P
0(t) - P0(t)W0

† ) ip dP0/dt (31)

P(t) ) P0(t) + U0(t) P′(t) U0(t)†

U0(t) ) exp[- i
p
W0(t - t0)] (32)

P′(t) ) ∆′(t) + (ip)-1 ∫t0

t
dt′ [V(t′),P′(t′)]

∆′(t) ) (ip)-1 ∫t0

t
dt′ [V(t′),P0] (33)

ønlκ( rb) ) ∑
k)1

K

dnl,kglκ( rb;Rnl,k) (34)
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methods have been developed. Therefore, although some
collision energies (of several keV) in the following examples
seem beyond chemical values, they in fact correspond to low
velocities and provide valid tests of our methodology. The
system H+ + H(1s), although simple in chemical terms, is very
illustrative of the challenges and issues arising in a first
principles dynamics. In addition, there are several theoretical
and experimental results for cross sections available in the
literature for comparisons. In our work, we have reproduced
these measurable quantities, and in addition have shown how
electronic populations and trajectories change over time during
collisions. Parts a and b of Figure 1 present results for reduced
differential cross sectionsθL sin(θL)(dσ/dΩ)JI

(L) of elastic and
electron transfer processes, respectively, vs laboratory angleθL

at an incident energy of 410 eV. Theoretical results obtained
with the screened Coulomb potential between nuclei (SCP) and
a simple nuclear Coulomb repulsion potential (CP) show marked
differences at low angles. Compared with experimental re-
sults,134 the bare CP shows artificial oscillations at low angles
while the agreement is clearly better for the SCP, which includes
the dynamical screening arising from electronic rearrangement
during the collision. Here the experimental values for the angle
have considerable errors and have been shifted by a constant
value to superimpose the second maximum with the theoretical
value. Similar agreement is found for other incident energies.135

In addition to asymptotic properties such as cross sections,
we can obtain time-dependent populations as shown in Figure
2a,b, in which the time evolution of the target H(1s) populations
are given for a 10 eV proton projectile in collisions for impact
parameters of 1.0 and 1.2 au, respectively. Here we see multiple

oscillations in the target atom population as a function of time
over an interval of 600.0 au (time), or about 15 fs; the period
of the oscillations is about 20 au’s, longer than at higher collision
energies. We also notice that a small change in the impact
parameter causes a large change in the result of the collision;
in this case a change of 0.2 au in the impact parameter makes
the difference between complete retention of the electron by
the target and complete transfer to the projectile, after collision.
The populations are very similar in the incoming portions of
the trajectories but diverge as the effects of coupling of the
electron and nuclei add up at close distances.

Pronounced population oscillations could be expected for
identical nuclei, but they also appear for heteronuclear systems,
such as He2+ + H(1s) undergoing excitation to He2+ + H(n )
2, 3), and electron transfer to He+(n ) 2, 3) + H+. Figure 3
presents a comparison of our results for charge transfer integral
cross sections with various experimental and theoretical results.
Our results are seen to be in very good agreement with the
available experimental data at the higher energies. At lower
energies our method is in good agreement with other theoretical
results for this system.136-141 Time-dependent phenomena of
interest for this system include the orbital alignment of the
projectile and the changes of electronic population of the target
1s state and the projectile 2s, 2px, and 2pz states. Figure 4 shows
the Löwdin populations of the target and projectile states,
obtained from the formula

for the population at nucleus a. The variation in time of the
alignment parameter for the projectile orbitals of H is shown

Figure 1. (a) Elastic differential cross section (in degrees× au’s) vs
lab angle for a proton incident at 410 eV on a hydrogen atom target:
(full line) SCP calculation; (dotted line) CP; (triangles) measurements
from Houver et al., 1974. (b) Same as (a) for the electron transfer
differential cross section. From Micha and Runge:Phys. ReV. 1994,
A50, 322. Reproduced with permission from the American Physical
Society. Copyright 1994.

Figure 2. (a) Löwdin population of the target 1s state vs time in au in
a 10 eV proton-hydrogen atom collision, atb ) l.0 au. (b) Löwdin
population of the target 1s state vs time in au in a 10 eV proton-
hydrogen atom collision, atb ) 1.2 au. From Runge and Micha:Phys.
ReV. 1996, A53, 1388. Reproduced with permission from the American
Physical Society. Copyright 1994.

na
L ) ∑

λ∈a
∑
µ,ν

[(S1/2)λµPµν(S
1/2)νλ + cc]/2 (35)
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in Figure 5, fromA0
(2)(t) ) n2px

M (t) - 2n2pz

M (t).142 It is clear that
significant oscillations are present during collisions also in this
case.

In addition to the previous one-electron systems, we have
done calculations for systems with several active electrons.
Issues of interest are whether the Eik/TDHF approximation
correctly accounts for electron correlation during collisions, and
whether atomic cores can be assumed to be inactive during the

course of the collision. We show in Tables 1 and 2 (from ref
128) results for He+(1s) + D(1s), with one electron at each
nucleus, at a collision energy of 10 keV (at which other
theoretical143-145 and experimental values are available for
comparison146-148) for integral electron exchange and excita-
tion cross sections respectively, corresponding to He+(1s) +
D(1s) f He(1s2s, 1s2p)+ D+ and f He+(1s) + D(2s, 2p).
Our results are in excellent agreement with the previously known
total transfer cross sections and, in addition, show the breakup
between transfer to 1s2s and 1s2p states of He. For excitation,
the present work agrees well with both theoretical and experi-
mental results, available for both D(2s) and D(2p) excitation.
Results for differential cross sections (to be published117), which
are more demanding on model accuracy, similarly show very
good agreement with experiments at 1.5 keV.

Some results on integral cross sections for H+ + Li(1s22s),
a system with an active atomic core, are shown in Tables 3 and
4 (from ref 128) at a projectile energy of 2 keV. We included
here atomic orbitals for both core and valence electrons. Values
of integral cross sections are presented in Tables 3 and 4 for
charge transfer and excitation, H(1s,2s,2p)+ Li +(1s2) f

Figure 3. Charge transfer integral cross section vs projectile energy
for He2+-H collision: (full line) Eik/TDHF; (dotted line) Erreaet al.;18

(circles) Hattonet al.;17 (crosses) experiment.34 From Runge and
Micha: Phys. ReV. 1996, A53, 1388. Reproduced with permission from
the American Physical Society. Copyright 1996.

Figure 4. Löwdin population of the projectile atom vs time in au in
a 4 keV He2+-H collision atb ) 0.2 au: (full line) 2s; (dotted line)
2px; (dashed line) 2pz. From Runge and Micha:Phys. ReV. 1996, A53,
1388. Reproduced with permission from the American Physical Society.
Copyright 1996.

Figure 5. Alignment parameter vs time in au in a 4 keV He2+-H
collision at b ) 0.2 au. From Runge and Micha:Phys. ReV. 1996,
A53, 1388. Reproduced with permission from the American Physical
Society. Copyright 1996.

TABLE 1: Comparison of Our Results with Other
Calculations and Experiments for the He+(1s) + D(1s)
Integral Cross Sections for Charge Transfer into He(1s2s)
and He(1s2p), at a Projectile Ion Kinetic Energy of 10 keVa

theory

state
present
work EMR EJSW KCL

experiment
OSPM

2s 0.02 <0.1 <0.1 NA NA
2p 0.74 0.72 0.72 NA NA
total 0.76 0.72 0.72 0.75 0.8( 0.1

a Values are in units of 10-16 cm3. Here EMR, EJSW, and KCL
stand for refs 143-145 and OSPM for ref 146. From Runge and Micha:
Chem. Phys. Lett.1999, 303, 15. Reproduced with permission of
Elsevier Science. Copyright 1999.

TABLE 2: Similar to Table 1 but for Integral Cross
Sections for Excitation of Da

theory experiment

state
present
work EMR EJSW KCL MSGG GDHHG

2s 0.06 <0.1 <0.1 0.02 0.04( 0.04 NA
2p 0.39 0.49 0.48 0.39 0.42( 0.04 0.48( 0.03
total 0.45 0.49 0.48 0.41 0.46 NA

a Here MSGG and GDHHG stand for refs 147 and 148. From Runge
and Micha: Chem. Phys. Lett.1999, 303, 15. Reproduced with
permission of Elsevier Science. Copyright 1999.

TABLE 3: Comparison of Our Results with Other
Calculations and Experiments for the H+ + Li(1s22s)
Integral Cross Sections for Charge Transfer into H(1s),
H(2s), and H(2px,2pz), at a projectile Ion Kinetic Energy of 2
keV, with Trajectories on the xz-planea

theory experiment

state
present
work SK ADM E FL GSKM AFW

VWC @
1943 eV

1s 0.6 NA NA 0.8 NA NA NA Na
2s 14.3 NA NA 15.0 14.8 NA NA NA
2px 11.4 NA NA NA NA NA NA NA
2pz 16.1 NA NA NA NA NA NA NA
2p 27.5 NA NA 22.1 18.8 NA 23( 8 NA
total 42.4 ∼23 15-58 37.9 33.6 32-70 NA 25.0( 3.5

a Here SK, ADM, E, and FL stand for refs 149-152 and GSKM,
AFW, and VWC for refs 153-156. From Runge and Micha:Chem.
Phys. Lett.1999, 303, 15. Reproduced with permission of Elsevier
Science. Copyright 1999.
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H+ + Li(1s22s) andf H+ + Li(1s22p), respectively. Our results
for total transfer to H are in very good agreement with four
other calculations,149-152 and also agree with values for transfer
into 1s, 2s, and 2p orbitals of H available in two of them.151,152

We have also obtained the breakup into 2px and 2pz components
(for trajectories in thexz-plane) from which polarization
parameters can be obtained. There is also good agreement with
three experimental results for total transfer, the last one of them
at a slightly smaller collision energy.153-156 The experimental
values are somewhat smaller than the detailed calculations but
reasonably close. Much less has been available on the excitation
cross sections. Here we find excitation only to H(2p) but none
to H(1s) or H(2s), as others have found from theory151 and
experiment,155 although our value is smaller that the others. We
have also obtained time-dependent populations for this collision
process (to be published118) that indeed show some amount of
1s Li core transient excitation at this collision energy.

An appealing aspect of a first principles molecular dynamics
is that the electronic density matrices allow calculations of
properties during collisions, such as the total electrical dipole
for a collision complex,D ) Dnucl + Del ) D(t;b,VP), where
Del(t) ) tr(F̂ID̂el). We have described light emission from the
complex formed during H+ + H(1s) collisions that arises from
electronic charge transfer and the related oscillatory dipole of
the complex. Calculations were done126 with a basis set of
traveling atomic functions, for collision energies of 100, 250,
and 1000 eV, to obtain the energy emitted per solid angle versus
both time and the light frequency in terms of the emission energy
cross section

whereΩLD is the solid angle subtended by the light detector
and Ek is the light energy with polarizationk ) x, z, for
trajectories starting at (b, Φ). Results are presented for the
intensity components of the light emitted parallel (alongz) and
perpendicular (alongx) to the incoming projectile H+ velocity,
in Figure 6a,b. Light emission is found to last several femto-
seconds and to be distributed over ultraviolet frequencies, and
the intensity of light emitted by the complex H2

+ is found to
increase as collision energies are lowered. Figure 7 compares
our results for the cross section dσL/dω ) (pω)-1 dQ/dω after
integration over the solid angles of emission with those in ref
157 for their 4π dσ/dω. The general features of the two results
are similar, although we find additional structure due to our
use of a larger basis set. We find the atomic emission peak at
the frequency of 0.375 au (wavelength of 121.5 nm); to its left
there is a small peak at 0.326 au (139.7 nm) corresponding to
the 3dσg f 2pσu transition of H2

+, and another one at 0.367 au
(124.1 nm) for 2pπu f 1sσg hidden by the atomic emission.
To its right we find peaks at 0.411 au (110.8 nm) and 0.465 au
(97.9 nm) for the transitions 2sσg f 2pσu and 3dπg f 2pσu,
respectively, and smaller peaks at larger frequencies. The results

also show a broad intensity distribution underneath the spectral
peaks, a feature of the emission by the collision complex which
might be important in studies of light emission in planetary and
stellar atmospheres.

Finally, oscillatory electronic charges may be expected to
appear in condensed matter phenomena such as in collisions of
ions with metal surfaces. We have some time ago developed a
model for electron transfer in ion-metal surface collisions based

TABLE 4: Similar to Table 3 for Excitation to
Li(1s22px,2pz)a

theory

state present work E
experiment

AFW

2px 7.4 NA NA
2pz 6.6 NA NA
2p 14.0 20.6 23( 5

a From Runge and Micha:Chem. Phys. Lett.1999, 303, 15.
Reproduced with permission of Elsevier Science. Copyright 1999.

d2Qk

dt dΩLD
) ∫0

∞
db b∫0

2π
dΦ( d2Ek

dt dΩLD
)

b,Φ
(36)

Figure 6. Energy cross section radiated per unit solid angle and time
vs time and vs light detector angleΘLD (ΦLD is kept fixed atπ/4 rad).
The collision energy is 100 eV. (a) Component of the cross section
(indicated here as thex-component) perpendicular to the incoming
projectile direction. (b)z-component along the projectile direction. From
DaCosta, Micha, and Runge:J. Chem. Phys.1997, 107, 9018.
Reproduced with permission from the American Physical Society.
Copyright 1997.

Figure 7. Light emission cross section integrated over detector angles
versus photon energy from the power spectrum derived from our time-
dependent calculations, compared with ref 157. From DaCosta, Micha,
and Runge: J. Chem. Phys.1997, 107, 9018. Reproduced with
permission from the American Physical Society. Copyright 1997.
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on partitioning of the density matrix and its equation, classifying
orbitals into a primary set that includes atomic orbitals and
localized metal orbitals at the impact area and a secondary set
with the other localized metal orbitals. Calculations were done
for the probability of neutralization in collisions of Na+ with
the W(011) metal surface, at collision energies between 1.0 and
100.0 au, for which some experimental results were avail-
able.119,120The localized states were constructed from general-
ized Wannier states written as linear combinations of Gaussians,
and the projectile orbitals were TAFs similar to the ones used
for ion-atom collisions. Figure 8 shows the time evolution of
the electronic populations of the 3s and 3pz orbitals of Na+

colliding with the W(110) surface (parts a and b, respectively),
for a collision energy of 10.0 au. Rapid population oscillations
are found to occur near the impact region for trajectories
perpendicular to the surface. At long times after collision the
populations settle into constant values from which neutralization
probabilities are obtained. These oscillations are present also
at the other collision energies and suggest that light emission
during electron transfer should also be present here as it is the
case for H+ + H.

6. Conclusion

We have provided answers to three fundamental problems
identified in a first principles molecular dynamics that explicitly
describe electronic rearrangements. The calculation of prob-
abilities and expectation values has been based on the eikonal
representation and its approximations, combined with sums over
initial conditions. The problem of accounting for the translational
motion of electrons moving with nuclei has been dealt with via
traveling atomic orbitals. Finally, the solution of coupled

differential equations for fast electronic transitions and slow
nuclear motions was solved with a relax-and-drive propagation
method.

These solutions have provided a theoretical framework of
general applicability and have given good results in applications
chosen to test our approach. We have established that extensive
electronic rearrangement occurs during collisions even when
final results change smoothly with kinematic parameters such
as collision velocities and deflection angles. We can therefore
expect new femtosecond phenomena developing during collision
dynamics, particularly in connection with light emission. Similar
challenging and conceptually enlightening subjects could be
explored for systems with more electrons and more atoms.

There are issues that should be addressed in further studies.
Trajectories generated from effective potentials seem to give
good answers but they could possibly be limited to relatively
large collision energies, an aspect that needs additional testing.
The TDHF wavefunctions appear to contain a relevant descrip-
tion of electron correlation, but they are known to fail in some
cases, such as we found in our early work on two-electron
transfer.108 Ways to improve electron correlation in molecular
dynamics may require a new look into many-electron theories,
to develop time-dependent versions with the desired accuracy
and computational efficiency, as we have outlined for multi-
configuration TDHF.

Our present applications have pointed out some directions
for future research. Areas of research within reach of present
computational methods are first principles dynamics of the
optical spectra of atoms and diatomics in clusters and solvents
and at surfaces, provided electronic rearrangements are localized.
Density matrix methods should be especially valuable to
describe large systems, including coherence and relaxation
phenomena. Some intriguing fundamental problems could also
be studied at a deeper level. One of them is the extent to which
nuclear motions remain regular instead of becoming chaotic,
while being coupled to rapid electronic oscillations. This is also
closely related to the calculation of physical properties from
sums over initial conditions for the nuclear variables.
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